

Module 7: Micronutrient Management

To view the chapter for this topic click here.

IOWA STATE UNIVERSITY Extension and Outreach

Introduction

• Micronutrients are those essential elements required only in small quantities for plant growth and reproduction.

- Seven essential elements considered micronutrients and form taken up by plants (in brackets)
 - $\circ~$ boron (B) [B(OH)_3 and B(OH)^4-]
 - \circ copper (Cu) [Cu²⁺]
 - \circ chlorine (Cl) [Cu⁻]
 - \circ iron (Fe) [Fe²⁺ and Fe³⁺]
 - o manganese (Mn) [Mn²⁺]
 - o molybdenum (Mo) $[MoO_4^{2-}]$
 - o $zinc (Zn) [Zn^{2+}]$

• While the micronutrient amounts needed are small, without them plants would not grow and reproduce and a deficiency can have dramatic impact on growth and yield.

NRCS 4

Introduction

- Most important sources of micronutrients:
 - o those naturally present in soil
 - o impurities in fertilizers and pesticides

• In some areas, deficiencies of micronutrients have been diagnosed frequently and producers are taking a closer look at their general availability.

• When micronutrients become a limiting factor, other inputs such as seed, water, fertilizer, etc. are less efficiently utilized.

Micronutrient uptake by crops

• Total micronutrient uptake is typically quite small compared to macro and secondary nutrients.

Micronutrient	Corn	Soybean	Alfalfa	
	150 bu	60 bu	6 ton	
	Ib/acre			
В	0.16	0.1	0.3	
Cu	0.1	0.1	0.06	
Fe	1.9	1.7	1.8	
Mn	0.3	0.6	0.6	
Мо	0.008	0.01	0.02	
Zn	0.27	0.2	0.24	
Source: University of Purdue Extension publication AY-239.				

- Function of B:
 - o cell wall formation
 - o sugar transport in plants
 - o flower retention
 - o pollen formation
 - \circ germination

- Boron deficiency symptoms:
 - o first appear at the growing points
 - o stunting bushy appearance near the top of the plant
 - o yellowing of newer leaves
 - o barren ears due to poor pollination
 - o hollow stems and fruit (hollow heart)
 - o brittle, discolored leaves and loss of fruiting bodies

Boron deficiencies

- Are found mainly:
 - o sandy soils with high pH
 - o in regions of highly weathered soils
 - o in soils with low organic matter
 - o during drought periods when root activity is restricted in the upper profile

• Crops sensitive to B deficiency: alfalfa, canola, sugar beet, sunflower.

• Boron fertilizer application can correct deficiencies but the application rate, method, crop and crop rotation should be carefully considered because toxicity can easily occur.

Ę

• Application in the seed furrow is not recommended because of toxicity potential.

Copper

- Functions of Cu:
 - o component of enzymes
 - o required for lignin synthesis
 - o strengths cell wall and prevents wilting

- Copper deficiency symptoms:
 - o stunting of plants
 - o reduced nodulation and N fixation in legumes
 - o delayed flowering and maturity
 - o pollen sterility
 - o dieback of leaf tips, stems, and twigs
 - o yellowing of leaves
 - o pale green leaves that wither easily

Copper Deficiencies

- Are mainly found:
 - o on organic soils
 - o sandy soils
 - o with pH above 7.5
 - o with excessive P and Fe levels
 - o in cool and wet conditions
- Crops sensitive to Cu deficiency: corn, wheat, and oat.
- Broadcast application of Cu mixed with N, P, or K fertilizers is a common application method.
- Since Cu is slowly converted to unavailable forms in most soils, an application can correct deficiencies for several years and total application should be monitored

E

NRCS 4

Iron

- Functions of Fe:
 - o production of chlorophyll in plants
 - o component of many enzymes
 - o associated with energy transfer, N transformations, N fixation, and lignin formation

- Iron deficiency symptoms:
 - o yellowing of leaves due to low levels of chlorophyll (interveinal chlorosis)
 - o leaves may turn completely yellow or almost white
 - o if severe deficiency, leaves turn brown and tattered as leaf tissues die

Iron Deficiencies

- Are found mainly in:
 - o high pH soils
 - o sandy soils
 - o organic soils
 - o cool, wet conditions
 - o poorly aerated or compacted soils

• Crops sensitive to Fe deficiency: soybean and grain sorghum.

• Foliar or planter-band applications are the most effective Fe fertilization methods.

• Variety selection is typically a more effective solution than Fe fertilization.

Manganese

- Functions of Mn:
 - o involved in enzyme activation for plant
 - o related to nitrogen metabolism
 - o plays a role in the synthesis of various compounds

- Manganese deficiency symptoms:
 - o interveinal chlorosis (similar to Fe)
 - o brown necrotic spots may appear
 - o delayed maturity is a deficiency symptom in some species
 - o white or gray spots on leaves of some cereal crops

Manganese Deficiencies

- Mainly occur:
 - o on organic soils with pH above 5.8
 - o high pH mineral soils with free carbonates
 - o soils with poor drainage and high organic matter levels
 - o saturated conditions with poor aeration
 - o sandy soils
- Crops sensitive to Mn deficiency: soybean, oat, and wheat.
- Foliar or band applications often are the most effective Mn fertilization method.
- Foliar applications of Mn sulfate are commonly used, but use of chelates is becoming more common.

Molybdenum

- Functions of Mo:
 - o involved in enzyme systems related to symbiotic N fixation in legumes

- o related to N and S metabolism, and protein synthesis
- o has a significant effect on pollen formation

- Molybdenum deficiency symptoms:
 - o in legumes are similar to N deficiency
 - o are not confined to the youngest leaves because Mo is mobile in plants
 - o irregular leaf blade formation known as whiptail
 - o interveinal mottling
 - o marginal chlorosis of older leaves

Molybdenum Deficiencies

- Are mainly found in:
 - o very acid soils
 - o highly weathering conditions
 - o sandy soils
 - o humid regions
- Molybdenum availability and uptake by plants increases with increasing soil pH, which is the opposite of other micronutrients.

• Liming acidic soils is the most practical and cost-effective way of correcting Mo deficiency.

• If fertilization is needed, a low Mo rate usually is applied banded with the planter or as a seed treatment.

NRCS 4

Zinc

- Functions of Zn:
 - o essential component of enzymes
 - o important for energy production, carbohydrate metabolism, protein synthesis
 - o growth regulation

- Zinc deficiency symptoms:
 - o occur mainly in new growth early in the season since it is not mobile in plants
 - o short internodes
 - o decrease in leaf size
 - o broad band of bleached tissue that goes across leaf veins

Zinc Deficiencies

- Zinc deficiencies are mainly found:
 - o on sandy soils low in organic matter
 - o eroded soils with exposed high pH subsoil
 - with severe root growth restrictions (cold, wet springs)

Ę

- o organic soils
- o high P fertilizer rates
- Crops sensitive to Zn deficiency: corn, grain sorghum, and soybean.
- Application to the soil is a common method of applying Zn fertilizers.

Chlorine (Chloride)

- Importance:
 - o osmotic functions within the plant (i.e., stomatal opening/closing)

- o electrical charge balance in several physiological functions
- o decreasing the incidence of various diseases

- Chloride deficiency symptoms:
 - o wilting, restricted or highly branched root systems (cereal crops)
 - o more susceptibility to diseases

NRCS 4

Chloride Deficiencies

- Occur mainly in:
 - o sandy soils in humid regions
 - soils derived from low chloride Cl⁻ containing parent materials.

 Crops sensitive to chloride Cl⁻ deficiency: wheat, potato, and barley, but a few crops (like tobacco) are very sensitive to high chloride Cl⁻ levels.

• There are few regions with chloride Cl⁻ deficiency, mainly because chloride Cl⁻ is applied to soils with KCl, the predominantly used K fertilizer.

 In regions with naturally high available soil K, no chloride Cl⁻ containing K fertilizer is normally applied so chloride Cl⁻ deficiency is more common.

Soil Sampling and Testing

• Soil tests should be calibrated for a particular region, soil, nutrient, and crop.

• The reliability of most micronutrient soil tests is in general lower compared to other tests.

• Some soils have higher levels of micronutrients in the subsoil, which eliminates the response to their addition.

• Confirmation of a deficiency with trial nutrient application, tissue testing, and visual symptoms is helpful.

Tissue Sampling and Testing

- Plant tissue tests can aid in determining if a particular nutrient is responsible for poor crop growth.
- When a deficiency is detected by tissue testing, a reduction in yield due to restricted crop growth has likely already occurred.
- Plant tissue tests must be also calibrated with field fertilization response trials.
- Calibration of tissue tests is more complex than for soil tests.
- Special care is required in taking plant tissue samples, including soil contamination.
- Tissue test interpretation should be based on calibrations with yield response for;
 - o specific crops
 - o plant part sampled
 - o stage of plant growth

Micronutrient Fertilizer Sources

Micronutrient	Fertilizer Name	Formula	Nutrient %
В	Sodium tetraborate	Na ₂ B ₄ O ₇ •5H ₂ O	14
	Boric acid	H ₃ BO ₃	17
	Solubor	$Na_2B_8O_{13}\bullet 4H_2O$	20
Cl	Potassium chloride	KCI	47
Cu	Copper sulfate	$CuSO_4 \bullet 5H_2O$	25
	Copper chelates	Various	Varies
Fe	Ferrous sulfate	FeSO ₄ •7H ₂ 0	20
	Ferric sulfate	$Fe_2(SO_4)_3 \bullet 4H_2O$	23
	Iron chelates	Various	Varies
Mn	Manganese sulfate	MnSO ₄ •3H ₂ O	27
	Manganese chelates	Various	Varies
Мо	Ammonium molybdate	(NH ₄) ₂ MoO ₄	49
	Sodium molybdate	Na ₂ MoO ₄ •2H ₂ O	39
Zn	Zinc sulfate	ZnSO ₄ •H ₂ O	36
	Zinc oxide	ZnO	78
	Zinc-ammonia complex	ZnSO ₄ •NH ₃	10
	Zinc chelates	Various	Varies

Recommended Practices for Micronutrient Management

• Ensure that poor crop growth in a field or portion of a field is not the result of other factors.

• Determine if a micronutrient deficiency has been identified before in a particular crop or soil type.

• Examine the affected crop for known specific micronutrient deficiency symptoms.

• Take separate soil and plant tissue samples from affected and unaffected areas for complete analysis.

Recommended Practices for Micronutrient Management

• If most indications point to a micronutrient deficiency, apply the micronutrient to a specific affected area to observe results and compare with non-treated areas.

• In choosing a micronutrient fertilizer, consider the solubility, safety concerning damage to seedlings or foliage, and application method such as soil or foliar.

• If a micronutrient fertilizer is applied with the seed, in bands, sprayed onto foliage, or from a chelated material, the application rates typically would be lower than with broadcast or non-chelated material applications.

• Consider that other crop inputs such as pesticides, lime, or manure can supply micronutrients or may affect the availability of micronutrients in the soil.